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Free Jet-Cooled Laser-Induced Fluorescence Spectrum of Methoxy Radical. 2.
Rotational Analysis of the 7\2A1 <— X?E Electronic Transition
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The rotational structure of the 03 and 3] bands of the A2A, ~> X2E electronic transition of the methoxy radical has been
measured. Simultaneous least-squares fits to these data and that from previously reported microwave studies of the ground
state have been performed. Twelve molecular parameters for the ground state and six for the excited state, characterizing
the rotational and spin structure of methoxy, have been determined. A brief discussion of the implications, in terms of geometries

and electronic structure, of these parameters is given.

[. Introduction

The methoxy radical CH;O is one of the most interesting of
all free radicals. This fact is attested to by the over 75 papers
that have been written “recently” about this species.! The interest
is generated in at least two distinct ways. CH,0 is known to be
a key intermediate in a number of extremely important chemical
reactions. For example, it is a free radical formed in the com-
bustion of hydrocarbon fuels. Add to that the role it plays in
atmospheric reactions and its existence in interstellar space, and
the study of its spectroscopy can easily be justified by the ap-
plication of that spectroscopy to the elucidation of methoxy dy-
namics.

*Present address: Department of Chemistry, Florida State University,
Tallahassee, FL. 32306.

On the other hand, methoxy represents a classic spectroscopic
challenge. It has an electronically degenerate ground state, E,
and hence is subject to Jahn—Teller distortion and a concomitant
“quenching” of its electronic angular momentum with a corre-
sponding diminution in its spin—orbit splitting. While Jahn—Teller
effects are of a vibronic origin, the rotational levels, or rovibronic
structure, should also be profoundly affected. Considerable
theoretical work>® has been expended upon the rovibronic

(1) See, for example, the reference given in the following: Brossard, S. D.;
Carrick, P. G.; Chappell, E. L.; Hulegaard, S. C.; Engelking, P. C. J. Chem.
Phys. 1986, 84, 2459.

(2) Child, M. S.; Longuet-Higgins, H. C. Philos. Trans. R. Soc. London,
A 1961, 254, 259.

(3) Child, M. 8. Mol. Phys. 1962, 5, 391; J. Mol. Spectrose. 1963, 10, 357,

(4) Brown, J. M. Mol. Phys, 1971, 20, 817.

(5) Hougen, J. T. J. Mol. Spectrosc. 1980, 81, 73.
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structure of degenerate electronic states, but there has been sparse
experimental data for comparison. The paucity is particularly
acute for molecules whose vibronic features are reasonably
well-known and hence offer the opportunity for the most stringent
comparisons of theory and experiment.

In our laboratory there has been a concerted effort to obtain
a combination of vibronic and rovibronic data on several molecules
with electronically degenerate and near-degenerate ground states.
The species whose vibronic and rovibronic structure have been
studied experimentally include methoxy, CH;0, monomethyl
sulfide, CH,S, cyclopentadienyl, CsHs, and the halobenzene
cations CgF¢+ and sym-CgHyF5™. These species taken as a group
offer an excellent ensemble for study as they differ markedly in
size, shape, and atomic composition. For example, in the group
we already know that spin—orbit splittings vary from >10% cm™
to unmeasurably small.

The present paper on methoxy is the second of several that will
deal with this radical. Recently we’ have reported a detailed
analysis of the vibronic structure of both the A’A, and the X°E
states of methoxy. Indeed, it might seem, that with all the at-
tention paid to methoxy, there would be little left to learn. The
ground-state rovibronic structure has been studied extensively by
laser magnetic resonance (LMR)® and microwave® techniques.
Our approach involves high-resolution optical spectroscopy of the
AZA, > X2E transition of jet-cooled CH;0. Interestingly, there
has been no previous detailed analysis of any rotationally resolved
optical spectrum of methoxy. (Note, however, the pioneering work
of Powers et al.!? and also that of Fuke et al.'!) Thus our
experiment can be expected to yield the first precise rotational
parameters for the excited A state. Such parameters are of
considerable interest because of the strong theoretical interest!2-16
in the structure of both the A and X states. However, rather
surprisingly, our results are also able to somewhat improve the
ground-state rotational parameters for CH;O. This is possible
since even though the microwave data, in particular, are much
more precise, the optical transitions determine directly the relative
positions of ground-state energy levels only indirectly determined
in the earlier studies. These ground- and excited-state rotational
parameters and a discussion of their implications are the principal
result of this present work.

[I. Experimental Section

The experimental apparatus and procedures were very similar
to those reported in ref 7 and will not be detailed here. As before
CH,0 was produced by KrF excimer laser photolysis of methyl
nitrite seeded into a He supersonic free jet expansion. The ro-
tationally resolved excitation spectra of the 03 and 3y bands were
obtained by using the frequency-doubled output of a XeCl excimer
pumped dye laser (respectively Lumonics Excimer-510 and Hy-
perdye-300). Typically this combination produced ~0.5 mJ/pulse
of UV light, which could be tuned in an automated manner over
2500 cm™.

Frequency calibration was accomplished by simultaneously
recording the I, spectrum with the laser fundamental while ob-
serving the CH,0 spectrum with its doubled output. The precise
positions of the CH;O lines are obtained by the following pro-
cedure. A computer program is used to obtain the positions of

(6) Watson, J. K. G. J. Mol. Specrosc. 1984, 103, 125.

(7) Foster, S. C.; Misra, P; Lin, T.-Y.; Damo, C. P; Carter, C. C; Miller,
T. A. J. Phys. Chem. 1988, 92, 4263.

(8) Radford, H. E.; Russell, D. K. J. Chem. Phys. 1977, 66, 2222. Russell,
D. K.; Radford, H. E. J. Chem. Phys. 1980, 72, 2750.

(9) Endo, Y.; Saito, S.; Hirota, E. J. Chem. Phys. 1984, 81, 122,

(10) Powers, D. E.; Hopkins, J. B.; Smalley, R. E. J. Phys. Chem. 1981,
85, 2711.

(11) Fuke, K.; Ozawa, K.; Kaya, K. Chem. Phys. Lett. 1986, 126, 119.

(12) Yarkony, D. R.; Schaefer, H. F., III; Rothenberg, S. J. Am. Chem.
Soc. 1974, 96, 656.

(13) Ohkubo, K.; Fujita, T.; Sato, H. J. Mol. Struct. 1977, 36, 101.
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R. J. J. Chem. Phys. 1982, 76, 4144,

(15) Jackels, C. F. J. Chem. Phys. 1982, 76, 505.

(16) Saeba, S.; Radom, L Schaefer, H. F., I11. J. Chem. Phys. 1983, 78,
845.
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both the I, and CH;O lines in terms of the dye laser grating
counter position. With the I, atlas,"” this procedure yields precisely
known frequencies for a large number of grating positions. The
frequency of the laser at any grating position can be expressed
as accurately as needed via a power series relationship between
the frequency and the grating counter reading. A least-squares
fit of the I, frequencies gives us the coefficients of a third-order
polynomial relationship. The absolute frequencies of the methoxy
lines are then found from their grating counter positions by using
the polynomial relation. The standard deviation in the fit to the
I, lines is always less than 0.03 cm™'. The consistency among
absolute frequencies of given methoxy lines of different data sets
is <0.04 cm™', about one-fifth the line width of the doubled dye
laser.

II1. Theory

The theory of a rotationally resolved electronic transition, even
one involving a degenerate electronic state, is well developed'® and
normally would need little elaboration. However, special attention
must be paid to two points. We also wish to make use of the
high-resolution microwave results,? already available for the ground
2F state. We will accomplish this by performing a least-squares
fits to a suitably weighted combination of the microwave and
optical data. Thus our depiction of the ground-state levels must
be precise to the accuracy of the microwave data, of the order
of 10 kHz. Fortunately we can follow much of the work of Endo
et al.? in this respect. However, we also wish to develop the
rotational analysis in a manner most suitable for a later comparison
with the analysis of the Jahn—Teller perturbed vibronic energy
levels. For this reason we will briefly review the theory underlying
the “rotational” structure of bath the ground *E and excited A
states.

A. Ground *E State. The rovibronic structure of doublet E
electronic states has received considerable attention. Child and
Longuet-Higgins® laid the theoretical framework, which was
enlarged upon by Child® and then by Brown* and Russell and
Radford® and group theoretically consummated by Hougen® This
approach has been applied to an analysis of the microwave
spectrum of CH,0 by Endo et al.? A parallel development has
been given by Watson.®

Let us define the rotational angular momentum, R:

R=J-S-L-6G (1)
where J is the total angular momentum exclusive of nuclear spin,"?
L is the electronic orbital angular momentum, S is the electronic
spin angular momentum, and G is the vibrational angular mo-
mentum.

If we make no assumptions about the molecular geometry, one
can always write>S the rigid-body rotational Hamiltonian as

Fr = HhLRd;'R; (2)
if

where the I,-j‘"s are the elements of the inverse of the inertial tensor
and / and j run over the Cartesian coordinates x, y, and z.

To proceed further, we need to choose a basis set. The simplest
appropriate function (exclusive of nuclear spin'®) can be written

[(Avplpi),ad PLMS.Z) = [(Ap plpi) o) |LP,M)IS.Z) (3)
On the left-hand side, the vibronic key may be assumed to be a
lincar combination of the eigenfunction kets for the vibronic
problem. In a degenerate electronic state with Jahn-Teller dis-

(17) Gerstenkorn, S.; Luc, P. Atlas du Spectre d absorption de la Mole-
cule & Iode; Centre National de la Recherche Scientifique: Paris, 1978. See
also: Gerstenkorn, S.; Luc, P. Rev. Phys. Appl. 1979, 14,791,

(18) See, for example: Herzberg, G. Electronic Spectra of Polyatomic
Molecules; Van Nostrand: New York, 1966.

(19) It is completely permissible for our purposes to consider the nuclear
spin-free Hamiltonian even though Endo et al.? observed hyperfine structure
in the microwave methoxy spectrum. For our analysis we use their
“hyperfine-free” frequencies (Table I11 of ref 9), and hyperfine splittings are
unresolved in the optical spectrum, for which, of course, nuclear spin statistics
are included in the intensity calculations.
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tortion, such kets can rigorously be characterized only by the
irreducible representations, e, a, etc., according to which they
transform as is indicated by the quantum number «. The com-
bination of approximate quantum numbers (A,v,/;,j) then serve
as a convenient index distinguishing among those functions with
the same value of «. The ket |J,P,M) corresponds to the
“rotational” wave function with P and M being respectively the
projection of J along the molecule-fixed and space-fixed z axis.
The electronic spin ket [SZ) gives the value, Z, of the molecule
fixed projection of S. To describe the rotational spectrum of an
E state, Endo et al.® found it most convenient to take the symmetric
and antisymmetric combination of the functions of opposite signs
of the molecule fixed-projection, i.e.

[(A0pl) i PMLS 28y = 272 [[(Avpl ) e P MS,Z) &
(1P (A wp—l =)o ~PM S ~2)] (4)

where now the quantum numbers A and /; on the left-hand side
of the equals sign take on only magnitudes and not signed values,
but P takes on all values P=J,J -1, ..,-Jand 2 =5, 8- 1,
..., =S. The linear combination with A and = of the same sign
corresponds to the °E, , state, while the °E, , state is represented
by the linear combination with A and X of different signs.

If we use eq 4 to take an expectation value of eq 2, we can
construct an effective rotational Hamiltonian, #®, for the E state
as

HR = 3 F#R (5)
i=1
with
7.[ll)\ = A[(Jz a Sz)z - 2A(El iz 6/A)(Jz i Sz)] + B(JZ i Jzz)
(6)
#E = B[]S, + J,5,] Q)
FR = h(L224+ LAY + b[LAJJ+ TT) +

LA(JJ+ + Jud)] - 2hy(L2LS, + L34S, (8)

HR = 2k, (LY, S, + L3S - 2h,(L2LS_ + L,2J.5,)
9

Terms constant for the vibronic level have been omitted from
7#R®. The molecular parameters appearing in %X are defined in
terms of matrix elements over the vibronic eigenfunctions (in-
cluding Jahn-Teller effects):

A = Ylegl;ex) (10a)

B = Yabesll 4 L, e} (10b)
hiLy? = Veleally ™t — L1 20l Yes ) (11a)
hL=? = Vil & il ex) (11b)
At = £ (exll, (L, + G))les) (12a)

e=El(el| (L. + G)I, " + Hz;f]) +(Ly+ Gy X
(sz7| - iIzy_l)le:k> (lzb)

The kets |e.) symbolize the appropriate linear combination of
functions [(A==1p,/j),a} which is the vibronic eigenfunction for
the ground state, i.e., nominally A =1, 0=0,/=0,j =1/,
and & = e,. As noted above, only « is a good quantum number.
L,? is the artificial ladder operator introduced by Hougen which
converts ey into e, in Cy, symmetry.

Written in this fashion, each of the terms of #¥® has a simple
physical significance. The first term, 7%, is the combined
Hamiltonian for rotational motion, electronic spin, and orbital
Coriolis interaction for a symmetric top molecule. It has only
diagonal matrix elements in the Hund’s case a like basis set of
eq 4. 7% yields the spin uncoupling effects with nonvanishing
matrix elements connecting the *E;/, and ?E, /, states.

The remaining two terms, %% and #E, of 7R yield the effects
upon the rotational energy levels caused by the Jahn—Teller vi-
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brational-electronic interaction. %% contains only operators
connecting the ZE,/z and 2E, states. 7R contains only operators
with nonvanishing maatrix elements only within the ZEUZ state
(first term) or the 2E3/1 state (second term). Hougen notes that
for small distortions (with certain other restrictions) that

€= 0 (13)

Clearly for a rigid symmetric top nondegenerate state h, and A,
both vanish.

Both Hougen and Watson have pointed out that the parameters
in 7#® are not completely defined by expectation values over the
vibronic eigenfunction, eq 10-12. There exist besides operators
connecting the 2E state of interest (o other electronic states. The
effect of these couplings upon the rotational energy levels of the
2E state are likely to be quite small. Nonetheless, in essence any
parameter, P, in 7#® (including %, and A,) should be represented
as a sum of two terms, i.e.

P=pP+ P (14)

where PY represents the expectation value of which we have spoken
above and P" represents a correction due to L uncoupling. Both
Watson and Hougen have given explicit expressions for the PL’s
valid through second-order perturbation theory.

The corrections Pl to the standard rotational constants, A, B,
etc., have been long known and are quite small for any molecule
for which the Born—Oppenheimer approximation is reasonably
valid. If the molecule suffers a significant Jahn—Teller effect, the
contributions P to A, and k, are similarly small compared to the
Jahn-Teller contribution represented by PY.

Up to this point we have not considered explicitly the effects
of electron spin coupling to its orbital motion or the rotation of
the molecule. As long as we are concerned only with an effective
operator within a 2E state, the spin—orbit coupling operator can
be represented by

#30 = al..S (15)

Van Vleck™ showed long ago that the general form of the spin—
rotation interaction can be written

H#SR = qRS + a(3R.S, - RS) + b(R,S, - R,S,) +
(RS, + R,S,) + d(R,S. + R,S,) + e(R,S, + R,S,) (16)

where the coefficients ay and a—e were unspecified but known to
consist of both first- and second-order contributions analogous
to the rotational parameters, P, as illustrated by eq 14.

It is relatively easy to show that gz can be written as

FSR = HER 4+ #ER (17)

where 758 denotes the terms present for a nondegenerate sym-
metric top and #5F indicates the remaining not necessarily
vanishing terms corresponding to the expectation value of the
vibronic eigenfunction. Following Hougen and adopting his no-
tation give

%g’% = efm-RzSz it 1/4(Ebb + écr:)(R+S— + R—*g+) (18)

from the first two terms of eq 16. From the remaining terms of
eq 16 we obtain

HIR = ¢ (L2R,S, + L,2R.S) +
el L HRS_+ S_R)+ LARS. + 5,.R)] +
eu[L (RS, + S.R) + LLA(R.S, + S.R})] (19)

The ¢; and L,? (see eq 1la and 11b) are operators within the
vibronic manifold, and so their expectation values correspond to
vibronic-level-dependent parameters for the spin interactions.

There are, of course, also contributions to the energy due to
second-order (and higher) contributions from excited vibronic

(20) Van Vleck, J. H. Rev. Mod. Phys. 1951, 23, 213.
(21) DeSantis, D.; Lurio, A.; Miller, T. A.; Freund, R. S. J. Chem. Phys.
1973, 58, 4625.
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levels. These terms are usually taken into account through a
centrifugal distortion Hamiltonian, # cp. Thus we write our total
Hamiltonian as

# = Ho+ Hep (20)
where
Fo = H® + F5O -+ FOR (21)
and we follow Endo et al.? in writing

Hep = apRAL.S, + n.RR,(L. + G;) +
nxRAL, + G,) — DyR* — DyyR*R.? - DR+
(hin/2D[REL2R + LR s + (hik/2) [RALIR +
L,2R 2, + (hyy/D[RLLARR + RR.) + LA(RRy +
R.R)4 + (hayx/D[RALAR,R.+ RR;) +
L.2AR,R; + RyR))+ + hy(L2R*+ LR (22)

The matrix elements of the total Hamiltonian, eq 20, have been
determined in the basis set, eq 4, by Endo et al.,’ and we have
used their results. In evaluating ##S® and 7 ¢p they have ap-
proximated R by J — S rather than J — S — L — G. However, since
L + G has only constant matrix elements in the vibronic state of
interest (or ones connecting it to other vibronic states) for these
smaller Hamiltonian terms, this is a reasonable procedure.

B. A%A Excited State. The rotational structure of the A,
excited state is, of course, much simpler than for the 2E state. As
long as we deal with excitation to any totally symmetric vibrational
level of the A state, we need not concern ourselves with any
nonzero expectation values of either the electronic or vibrational
angular momentum. Furthermore in these experiments, no
electron spin splittings were resolved in the A state. Thus we can
take %, as eq 21 and reduce it:

Fo = H® + HO + HR = HR = HR =
BN + (4, - B)NZ + 1, (23)

Since the molecule is close to Hund’s case b, we introduce the
conserved case b angular momentum, N = J — S, with projection
along the top axis of K. We introduce the subscript v on the
parameters to indicaate that as usual they are functions of the
vibrational level over which the usual expectation values, analogous
to eq 10~12, are to be taken. The parameter vy, is introduced to
denote the vibronic energy of the appropriate »y level of the A,
state.

It is again necessary to add to 7, a centrifugal distortion term,
% cp. However, its form is now much simpler and follows from
eq 22:

Hep = ~DyN* — DygN2N;? — DgN* (24)
A general, symmetrized case b basis function can be written®

V=N KM NSE) = T (DHNS™MQT+ D2 X

MgMy
N S o
NEKMpyx)|SM, 25
(MN 0 —M,)' ) ISMs) (25)

with
N K.Mpyx) =
2V |NKMy) £ (-DMEIN-K.My)]  (K=0) (26)

For K = 0, the simple ket |V,K,My) obviously suffices. Since
in this work transitions to J = N £ 1/, are degenerate and not
distinguished, the Hamiltonian % + 7f cp may be evaluated by
using eq 25, yielding only diagonal values, ie.

(?{D + 7‘{CD) = BJV(N + !) + (Av i ‘B\r)-!(2 i
DANAN + 1) = DygN(N + 1)K? — DgK* + 5,5 (27)

C. Transition Intensities. It is important to consider the
intensities of the laser-induced fluorescence (LIF) transitions in
the A2A, <> XZE electronic transition for two distinct reasons.
First, the intensities play an important role in making and con-
firming particular assignments in the rotationally resolved spec-
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trum. Second, it is of considerable interest to inquire as to whether
the rotational levels of methoxy in the jet are in Boltzmann
equilibrium and, if so, at what temperature.

In the LIF process, molecules absorb laser photons with fre-
quency # and polarization g, and are excited from initial level A
to an excited level B, followed by emission of photons of frequency
v and polarization p to a final level C. The fluorescence intensity
in such a process is described by*

I(AB,Cppr) = NRp(wpn) vPK () San(e8) See(B,7) X

Y (1)MeMe S R(M,), X

MMy M,

(J;. 1 S )(Ja 1 )X
M, w My M, wm My
I s J J,
sew 7, * ( Ty (28)
M, -M, p M My pp M,

where K(v) and G(y;) are the detector response as a function of
frequency »; and polarization up, respectively, p(v.p) is the ra-
diation density of the laser beam, N is the number of molecules
in the initial rotational state, S,g is the line strength of the
transition o — 4 calculated as if it takes place in isotropic free
space, M., is the projection of the total angular momentum J, on
the space-fixed axis (z), and F(M,) is the fraction in the sublevel
M,. The parameters c, 3, and v denote all the quantum numbers
(including J) needed to define a specific quantum level in the A,
B, and C electronic states, respectively.

In our experiment, the laser is linearly polarized with its electric
field vector along the z axis (& = 0) and the M, sublevels of the
initial state are assumed egually populated (F(M,) = constant).
If the detector constant and frequency »; do not change signifi-
cantly over the range of the emission frequencies, both K(ry) and
vp can be considered as constants. Since the total fluorescence
is collected, we should sum over all the possible final states and
polarizations:

I(AB) =

M, 0 M

1 Ty sl &

—(1 + cos* 8 =
?[2(1 o )(M., = Mb+1)

J, L .
sinzﬁ(f;/!b 0 ;Jb) +5(1+cas‘6)x

G ;
(—Mh l M.,-l) ]XSE(,&T) (29)

where K = K(v)v7 and is assumed to be a constant. The cosine
and sine 0 terms approximate G(uy) as the detector views only at
an angle § (§ = 0° in our experiment) with respect to the z axis.
This approximation is tantamount to assuming that the detector
itself is insensitive to the polarization of the photons but reflects
the variation in abundance of photons as a function of angle that
is inherent in polarized emission.

The key factors remaining in eq 29 are the isotropic transition
probabilities S. We use 2F state basis functions, |F,J,P.M,8,Z,%),
defined by eq 4 and ?A state basis functions, |4,/,M.N,K.S.%)
defined by eq 25 and 26. After a considerable amount of ma-
nipulation detailed in the Appendix, we obtain in eq Al4 and A15
explicit expressions for the S’s contained in eq 29.

The only remaining quantity requiring discussion is the popu-
lation in a given rotational level N®If methoxy’s rotational
population is in thermal equilibrium, then for the E state

N} = Z Nigie Bu/AT (30)

Ja 1 Jb 2
%‘,(A,B,C) = KN;p(») Sab(a56)§ X
b b

(22) Kinsey, 1. L. Ann. Rev. Phys. Chem. 1977, 28, 349.
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TABLE I: Methoxy A%A; — XZEMI 09 Rotational Transitions
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J K1 zr Jit Ty K’ obsd, em™ obsd — calcd
8.5 1.0 0.5 75 0.0 31613.66 0.02
7.5 2.0 0.5 6.5 1.0 31615.32 0.05
6.5 3.0 0.5 55 2.0 31616.52 0.05
8.5 3.0 0.5 8.5 1.5 2.0 31618.21 -0.07
1.5 1.0 0.5 6.5 0.0 31618.80 -0.02
6.5 2.0 0.5 5.5 1.0 31620.15 0.03
55 3.0 0.5 4.5 2.0 31620.97 -0.01
9.5 1.0 0.5 9.5 8.5 0.0 31621.40 0.07
7.5 3.0 0.5 725 6.5 2.0 31622.03 0.02
7.5 0.0 0.5 6.5 1.0 3162227 0.06
5.5 2.0 0.5 4.5 1.0 3162467 0.04
4.5 3.0 0.5 35 2.0 31625.14 0.00
7.5 20 0.5 75 6.5 1.0 31625.58 -0.08
6.5 0.0 0.5 515 1.0 31627.01 -0.05
5:5 1.0 0.5 4.5 0.0 31628.17 0.01
5.5 3.0 0.5 35 4.5 2.0 31628.40 -0.01
4.5 2.0 0.5 3.5 1.0 31628.80 0.02
8.5 0.0 0.5 8.5 7.5 1.0 31628.80 -0.09
3.5 3.0 0.5 2.5 2.0 31628.94 0.00
6.5 2.0 0.5 6.5 5.5 1.0 31628.94 -0.09
1.5 1.0 0.5 i) 6.5 0.0 31629.23 0.09
4.5 3.0 0.5 4.5 3.5 2.0 31631.08 0.01
5.5 0.0 0.5 4.5 1.0 31631.59 0.04
5.5 2.0 0.5 55 4.5 1.0 31632.07 0.01
4.5 1.0 0.5 3.5 0.0 3163232 0.01
3.5 2.0 0.5 25 1.0 31632.59 0.00
6.5 1.0 0.5 6.5 55 0.0 31632.5% 0.07
T3 0.0 0.5 735 6.5 1.0 31632.59 -0.01
3:5 3.0 0.5 3:5 2.5 2.0 31633.39 -0.00
4.5 2.0 0.5 4.5 35 1.0 31634.73 0.00
5.5 1.0 0.5 5.5 4.5 0.0 31635.63 0.07
4.5 0.0 0.5 335 1.0 31635.63 -0.07
2.5 2.0 0.5 1.5 1.0 31636.06 0.02
6.5 0.0 0.5 6.5 535 1.0 31636.06 0.10
3.3 1.0 0.5 2:5 0.0 31636.06 -0.04
3.5 2.0 0.5 3.5 245 1.0 31637.03 -0.01
4.5 1.0 0.5 4.5 38 0.0 31638.24 0.02
5.5 0.0 0.5 5:5 4.5 1.0 31638.98 0.01
2.5 2.0 0.5 2i5 1:5 1.0 31638.98 -0.03
2,5 1.0 0.5 1.5 0.0 31639.53 -0.01
3.5 0.0 0.5 2.5 1.0 31639.55 0.06
3.5 1.0 0.5 35 2.5 0.0 31640.55 0.00
3.5 2.0 0.5 6.5 55 1.0 31641.00 0.03
4.5 0.0 0.5 4.5 3.5 1.0 31641.67 0.03
4.5 2.0 0.5 55 4.5 1.0 31642.15 -0.01
2.5 1.0 0.5 2.5 1.5 0.0 31642.56 0.05
1.5 1.0 0.5 0.5 0.0 31642.56 -0.09
2.5 0.0 0.5 1.5 1.0 31642.94 0.00
6.5 1.0 0.5 7.5 6.5 0.0 3164294 -0.02
35 2.0 0.5 4.5 3.5 1.0 31642.94 -0.04
2.5 2.0 0.5 3.5 2.5 1.0 31643.45 -0.02
1.5 1.0 0.5 1.5 0.5 0.0 31644.11 -0.02
5.5 1.0 0.5 6.5 58 0.0 31 644.46 -0.03
4.5 -1.0 0.5 4.5 3.5 2.0 31644.97 0.02
4.5 1.0 0.5 5.5 4.5 0.0 31645.67 -0.00
2:8 0.0 0.5 2.5 1.5 1.0 31645.90 -0.01
3.5 1.0 0.5 4.5 %5 0.0 31646.48 -0.02
2.8 1.0 0.5 3.5 2.5 0.0 31647.03 0.05
L5 1.0 0.5 2.5 k5 0.0 31647.03 -0.08
L3 0.0 0.5 1.5 0.5 1.0 31647.53 0.00
] 0.0 0.5 6.5 5.5 1.0 31647.89 0.00
4.5 0.0 0.5 5.5 4.5 1.0 31649.07 0.01
2.5 -1.0 0.5 25 ) 2.0 31649.17 -0.05
3.5 0.0 0.5 4.5 3.5 1.0 31649.90 0.01
0.5 0.0 0.5 1.5 0.5 1.0 31650.35 0.07
2.5 0.0 0.5 35 2.5 1.0 31650.41 0.04
1.5 0.0 0.5 2.5 1:5 1.0 31650.47 -0.03
7.5 -2.0 0.5 8.5 7.5 30 31651.10 0.02
5.3 -1.0 0.5 6.5 3.5 2.0 31651.20 ~0.00
1.5 1.0 0.5 2.5 0.0 31651.52 -0.04
4.5 -1.0 0.5 35 4.5 20 31652.37 -0.01
2.5 1.0 0.5 3.5 0.0 31652.90 —0.02
6.5 -2.0 0.5 75 6.5 3.0 31652.90 -0.04
3.5 -1.0 0.5 4.5 3:5 2.0 31653.21 0.02
0.5 0.0 0.5 1.5 1.0 31653.21 -0.04
2:5 -1.0 0.5 3.5 2:5 2.0 31653.73 0.06
1.5 -1.0 0.5 25 1.5 2.0 31653.76 —0.04
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I K bl Jyt 't K’ obsd, cm™! obsd — caled
35 1.0 0.5 4.5 0.0 31653.83 -0.08
35 -2.0 0.5 6.5 5:5 3.0 31654.52 0.09
4.5 1.0 0.5 5.5 0.0 31654.52 -0.04
1.5 0.0 0.5 2.5 1.0 31654.92 -0.04
4.5 -2.0 0.5 5.5 4.5 3.0 31655.60 0.00
2.5 0.0 0.5 3.5 1.0 31656.35 0.04
35 -2.0 0.5 4.5 3.5 3.0 31 656.47 0.07
0.5 -1.0 0.5 1.8 20 31656.54 0.00
25 -2.0 0.5 3.5 25 3.0 31656.87 -0.00
3:5 0.0 0.5 4.5 1.0 31657.31 —0.00
4.5 0.0 0.5 5.5 1.0 31657.97 -0.00
1.5 -1.0 0.5 2.5 2.0 31658.25 0.00
55 0.0 0.5 6.5 1.0 31658.25 -0.03
2.8 -1.0 0.5 3.5 2.0 31659.61 0.00
3.5 -1.0 0.5 4.5 2.0 31 660.60 -0.02
4.5 -1.0 0.5 S5 2.0 31661.36 0.08
1.5 -2.0 0.5 25 3.0 31661.45 0.01
2.5 -2.0 0.5 35 3.0 31662.76 -0.04
35 -2.0 0.5 4.5 3.0 31663.77 -0.06
4.5 =2.0 0.5 85 3.0 31664.46 —0.04
5.5 -2.0 0.5 6.5 3.0 31 664.80 -0.03
2.5 -3.0 0.5 3.5 4.0 31665.85 -0.01
35 -3.0 0.5 4.5 4.0 31666.91 0.00
4.5 -3.0 0.5 5.5 4.0 31667.62 0.01
5.5 -3.0 0.5 6.5 4.0 31667.96 0.00

2QOnly the K" of A = +1 component is listed here. The actual wave function also contains A = —1 component with the sign of K’ opposite from

the sign of K” listed in the table. *J, and J,
corresponds to J/ =
be degenerate, the transition frequency of Q(J" K", F))

where NL is the total population of the E state, Z is the rotational
partition function, Eg is the energy of the specified rotational level
calculated by eq 20 or some suitable approximation thereto, and
g1 is the nuclear spin weight for a given rotational level (the 2J
+ 1 rotational degeneracy is included in eq 29).

Weber?? has considered the problem of nuclear spin weights
for a number of symmetrical molecules. Using his reasoning, we
deduce that the two components of the e rovibronic levels together
have a nuclear spin statistical weight of 4, while the a, and 4, levels
which occur in pairs have a weight of 4 each. For CH;0 in the
vibrationless level of the X2E state, we find that the rovibronic
levels for which P — £ — A = 3m (m integer) are of & symmetry
when P — 3 — A = 3m, one of the pair of functions defined by
eq 4 is a,, and the other is a,, with the symmetries corresponding
respectively to the plus and minus signs in that equation.

Programming eq 29, supplemented by eq 30, Al4, and Al4,
allows us to predict all the spectral line intensities as a function
of just one variable, the temperature 7. Figure 1 shows a com-
parison of such a predicted and observed spectrum for the 09
transition. One can see that the agreement is very satisfactory
assuming T = 25 K.

We have also simulated spectra taken from a continuous ex-
pansion. In those cases, lower temperatures (=10 K) are required
for the best fits, but here systematic discrepancies appear, indi-
cating lack of Boltzmann equilibrium in these more intense ex-
pansions.

IV. Analysis and Results

The measured rotational transition frequencies for the vibra-
tional bands assigned as 0J and 3j are given in Tables I and II,
respectively. In section II, the theory of the energy levels of both
the ground X2E and the A2A, states has been worked out in
considerable detail. In principle, then, one merely has to calculate
the energy level differences as a function of the molecular pa-
rameters in the two states and “fit” the observed lines. This task
is obviously made much easier by the existence of an excellent
set of ground-state parameters from the work of Endo et al.
However, we found that simply following this approach made
assignments of warmer (=20 K) spectra nearly impossible and

(23) Weber, A. J. Chem. Phys. 1980, 73, 3952; 1981, 74, 4754; 1982, 76,
3694,

refer to the J quantum number of the spin—rotation component F, and F,, respectively, which in turn
N'+ 1/, and J’ = N’ '/, respectively. Because the spin-rotation doublet of the
and R(J”,K"F)) is equal ta that of P(J",K",F;) and Q(J",K",F,), respectively.

2A, state is not resolved and is considered to

even for our coldest spectra left a few unassigned lines. Moreover,
the computational labor in such a direct approach is enormous
if assignments do not “converge” very rapidly.

Therefore we developed the following iterative procedure. Two
computer programs were written; one predicts transition fre-
quencies from a set of molecular constants for both states; the
other fits molecular constants from assigned methoxy line positions.
To provide rapid turnaround time, it was desirable that these
calculations be made in our laboratory computer (PC AT). Using
the complete Hamiltonians of eq 20 and 27 would make this
computation practically impossible. We therefore adopted a
strategy of using eq 20 but neglecting all terms in the ground-state
Hamiltonian, contained in #%, %5, #5¥, and #cp. This ap-
proximation has the dramatic effect of making the ’E state
Hamiltonian 2 X 2 block diagonal, a problem easily handled by
the PC AT. Furthermore, comparison of the ground-state energy
level structure calculated in this manner as compared to the
complete Hamiltonian, eq 20, revealed that almost all the shifts
in energy were 510 MHz. For the microwave precision in the
0.01-MHz domain, eq 20 is absolutely necessary; for the optical
accuracy of ~1000 MHz, the above approximation clearly suffices.

With these two laboratory computer programs, the iterative
analysis proceeded as follows. Analysis started with the coldest
spectrum of the 3} band, which contained 17 distinct transitions
of reasonable intensity. An initial assignment of seven lines was
made by using combination differences and the ground-state
energy levels predicted from the constants of Endo et al. These
combination differences gave initial values for 4’ and B”. By
iterating, predicting, and fitting, all but one line could be fit within
experimental error.

It was then possible to proceed to warmer spectra. Finally some
47 lines were included in the analysis of the 3j band. By iterative
procedure all were assigned; however, following the precedent of
the coldest spectrum, six lines had residuals more than 5 times
the expected experimental error. More to the point, these residuals
were nearly constant. Since the upper state constants were now
well determined, it became likely that there was apparently some
small error in the ground-state energy levels.

It may seem surprising that an optical experiment with a
precision roughly 10° lower than the microwave (and LMR) data
would question the accuracy of the ground-state constants obtained
from the latter. However, it must be remembered that several



2272 The Journal of Physical Chemistry, Vol. 93, No. 6, 1959 Liu et al.
TABLE II: Methoxy A%A; — X?E;;, 3; Rotational Transitions
J K"e z B i Iyt K’ obsd, cm™ obsd - caled
5.5 1.0 0.5 4.5 0.0 32290.32 0.01
4.5 2.0 0.5 3.5 1.0 32291.02 -0.01
5.5 0.0 0.5 4.5 1.0 32293.77 0.06
4.5 1.0 0.5 35 0.0 32294.58 0.04
3.5 2.0 0.5 235 1.0 3229494 0.05
3.5 3.0 0.5 3.5 25 2.0 3229574 0.08
4.5 2.0 0.5 4.5 3.3 1.0 32296.87 -0.02
5.5 1.0 0.5 5.5 4.5 0.0 32297.66 0.05
4.5 0.0 0.5 3.5 1.0 3229798 0.03
2.5 2.0 0.5 1.5 1.0 32298.41 0.02
35 1.0 0.5 2.5 0.0 32298.41 0.02
315 2.0 0.5 3.5 2.5 1.0 3229928 -0.01
4.5 1.0 0.5 4.5 3.5 0.0 32300.45 0.06
N8 0.0 0.5 5.5 4.5 1.0 32301.09 0.05
2.5 20 0.5 2.5 1.5 1.0 32301.34 0.02
25 1.0 0.5 1:5 0.0 32301.91 0.03
3.5 1.0 0.5 3.5 2.5 0.0 32302.82 0.04
4.5 0.0 0.5 4.5 3.5 1.0 32303.76 -0.04
4.5 2.0 0.5 55 4.5 1.0 32304.20 -0.02
2.5 1.0 0.5 2.5 1.5 0.0 32304.86 0.04
IS 1.0 0.5 0.5 0.0 32305.00 -0.01
3.5 2.0 0.5 4.5 3:5 1.0 32305.16 0.01
2.5 0.0 0.5 1.5 1.0 32305.34 0.05
2.5 2.0 0.5 3.5 23 1.0 32305.67 -0.04
3.5 0.0 0.5 35 255 1.0 32306.21 0.01
1.5 1.0 0.5 15 0.5 0.0 32306.44 -0.04
4.5 -1.0 0.5 4.5 3.5 2.0 32307.11 -0.03
4.5 1.0 0.5 5:5 4.5 0.0 32307.67 -0.05
2.5 0.0 0.5 2.5 1.5 1.0 32308.24 0.02
3.5 1.0 0.5 4.5 35 0.0 32308.62 -0.03
2.5 1.0 0.5 35 2.5 0.0 32309.20 -0.02
LD 1.0 0.5 2:5 1.5 0.0 32309.35 -0.05
) B 0.0 0.5 1.5 0.5 1.0 32309.89 0.01
55 0.0 0.5 6.5 5.5 1.0 32309.89 0.06
4.5 0.0 0.5 5.5 4.5 1.0 32311.14 0.01
25 -1.0 0.5 x5 15 2.0 32311.51 -0.04
35 0.0 0.5 4.5 35 1.0 32312.05 —0.01
0.5 0.0 0.5 1S 0.5 1.0 32312.66 0.03
1.5 0.0 0.5 2.5 1.5 1.0 32312.75 -0.05
|35 1.0 0.5 2.5 0.0 32313.78 -0.02
4.5 -1.0 0.5 3.5 4.5 2.0 32314.46 -0.01
2.5 1.0 0.5 35 0.0 32315.04 -0.04
0.5 0.0 0.5 1.5 1.0 32315.49 -0.07
3.5 1.0 0.5 4.5 0.0 3231594 -0.03
1.5 -1.0 0.5 2.5 1.5 2.0 32316.04 -0.09
5.5 =20 0.5 6.5 5.5 3.0 32316.47 0.02
4.5 1.0 0.5 5.8 0.0 32316.47 —0.03
1.5 0.0 0.5 2.5 1.0 32317.19 —0.01
4.5 -2.0 0.5 5.5 4.5 3.0 32317.11 -0.02
25 .0 0.5 35 1.0 32318.49 0.01
3.5 -2.0 0.5 4.5 3.5 3.0 32318.62 -0.01
0.5 -1.0 0.5 1.5 2.0 32318.90 0.02
2:5 -2.0 0.5 3.3 2.5 3.0 32319.22 0.04
3.5 0.0 0.5 4.5 1.0 32319.36 -0.02
1.5 -1.0 0.5 25 2.0 32320.48 -0.05

aSee footnote a of Table I. ?See footnote b of Table L.

of the molecular parameters listed by Endo et al. are determined
very indirectly. For example, there are no observed microwave
transitions across the K stacks of the ground state. Indeed, the
observed optical discrepancies could be accounted for easily by
slightly shifting the relative position of the ZE K stacks. In fact,
variation of any one of several ’E constants, e.g., 4", ¢, by an
amount roughly 5-10 times its expected error limits, removed the
observed discrepancies.

The question now was whether any combination of constants
would fit the microwave and optical data simultaneously, within
their respective experimental errors and, if so, what that com-
bination would be. To resolve that question, one has to use the
complete Hamiltonian of eq 20, including all the small terms. The
resulting matrix is (47 + 2) X (47 + 2) with more than 20 variable
parameters, a problem obviously requiring something beyond a
personal computer.

Our approach was to use a nonlinear least-squares program
running on the Cray at the Pittsburgh and then the Ohio Su-

percomputer Centers. The model was the differences in the
assigned eigenvalues of the 2E and 2A, states calculated from the
Hamiltonians of eq 20 and 27.

For the least-squares fitting, a previously described program
NLLSQ was used with modification on the Cray. The principal
enhancement was to generalize the routine to handle quite different
weights for the data points. The final weighting employed was
50000:1 for the microwave data to optical data.

After the 3} band of methoxy was assigned, about 90 lines of
the 0f band spectra were obtained by pulsed jet expansion. The
procedure of calibration and assignment used was similar to that
used for the 3} band. Since the spectra obtained in the pulsed
jet are hotter than those obtained in the continuous-wave (cw)
jet (~25 vs ~10 K), it is possible to determine the centrifugal
constants of the 2A state more accurately. Indeed, a comparison
of the 2 X 2 nonlinear least-squares fitting of both the 03 and 3;
bands showed that the 2A, state centrifugal constants of the 38
band were too large while the A, state rotational constants A
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Figure 1. Rotationally resolved spectrum of the 09 transition of the
methoxy radical. The upper trace shows the experimental spectrum,
while the lower trace shows a simulation using eq 29 and assuming a
rotational temperature of 25 K. The simulation is quite good but not
perfect. The small discrepancies probably result from the approximations
discussed in the text as well as possible small deviations from Boltzmann
equilibrium among the rotational levels.

and B of both the 0% and 3} bands were in agreement with each
other. This indicates that the centrifugal constants of 3§ band
obtained so far are not very reliable or, perhaps, some of the weak
lines of 3} might even be misassigned. The same indications were
obtained by the comparison of the (4J + 2) X (4J + 2) fittings
with combining microwave spectra and 0§, 3§ optical spectra,
respectively. The 3§ band transitions were then reexamined, and
it was found that just by changing the assignment of four lines
on the lower frequency side of the spectrum and two lines on the
higher frequency side, it was possible to get consistent contrifugal
constants. All of those lines where the reassignment occurred are
very weak.

The 03 band and the reassigned 3} band were then combined
with the microwave transitions, and two microwave-optical (4.J
+ 2) X (4J + 2) fittings were performed. A comparison of the
constants obtained by these two fittings showed that, within 2
standard errors, the 2E state constants were in agreement with
each other. At this stage, it was desirable to combine the mi-
crowave and all the optical transitions together and carry out a
joint fitting. The joint fitting was performed by assuming that
both 0f and 3} bands have identical 2A, state centrifugal constants,
and the final results are presented in Tables I1T and IV. It should
be clearly noted that the quality of the fit to the microwave data
is not degraded from that obtained by Endo et al. and there are
no longer discrepancies within the residuals for the optical data.
Of the major constants, i.e., those in the simple symmetric top
model, only one has changed beyond the error limits given by Endo
et al. That parameter is 4" (and perforce 4”¢, — ¢), which has
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TABLE III: CH;0 Molecular Parameters? (cm™) of the X°E Ground
State

ref
b this work

at,d —-62.24 (17) -61.974 (70)
A" 5.169 (19) 5.2059 (36)
B” 0.931683 (15) 0.9316825 (7)
At — e 1.812 (9) 1.7730 (36)
€an 1.365 (57) ~1.3533 (40)
€re -4.76 (22) X 1072 -4.35 (11) % 1072
2" 8.07 (360) X 1072 8.092 (14) x 1072
el -5.7263 (127) X 107 =5.7359 (40) x 1073
hy 2.5166 (59) x 107 2.5117 (17) % 1073
h, 4.663 (133) X 102 4.605 (47) x 1072
kb, 4.400 (604) x 1073 4.400 X 107%
1e5; 6.1 (31) % 107 6.1 X 107
D"y 2.519 (15) x 1076 2,519 X 107%

ik 2.568 (13) X 107° 2.568 x 107
D 7.03 % 107 7.03 X 107
In 0.0° 0.0¢
hix 7.86 (39) X 1078 7.86 % 107%
Ban —-1.6 (14) x 107 -1.6 X 107
by -1.74 (16) X 1073 ~1.78 (43) X 107
by 6.3 (46) x 107 6.3 x 1078

g;j 4.5 (25) x 107? 3.48 (86) X 1073
E( Es2.K=0,/=0.5) -3.105 (100)

22 5 times standard error in parentheses. ?Endo, Y ; Saito, S.; Hi-
rota, E. J. Chem. Phys. 1984, 81, 122. ‘¢, = €,B”/A”. ?Fixed at
value in footnote b, ©Fixed.

TABLE IV: CH;0 Molecular Parameters® (em™') for the A%A; State
v = 31614.513 (39) 1o = 32276.866 (43)

= 4.9810 (34) Ay’ = 4.9833 (67)
B’y = 0.74267 (57) B, = 0.73252 (136)
v =2.519 X 107% D’y =2.519 x 1076
ek = 2.568 X 107 ok = 2.568 X 107¢
=7.04 X 107% =7.04 X 107

22 5 times standard error in parentheses. °Held at ground-state
value.

shifted by about 5 standard deviations. Interestingly, some of the
minor parameters have adjusted fairly significantly to “conform”
to the new A” value. In addition, many of the error limits have
changed 51gn1f1cantiy with the addition of the optical data.

Table IV gives the molecular parameters for the AA state
which are determined for the first time by this experiment. These
are given for the vibrationless level and v’ = 1.

In addition, the rotational analysis establishes an extremely
precise value for methoxy’s band origin, i.e., Tpg = 31614.51 cm™.
It is worth noting, as is done in Table I1I, that with use of the
conventional definitions, the lowest level (the 2E3/2, K=0,J=
0.5 level) of each vibrational state lies below the band origin. For
the vibrationless level, this difference amounts to —=30.11 cm™,
yielding an excitation frequency from this lowest level of 31644.62
cem™.

It is interesting to compare the geometries of methoxy in its
X and A states. Unfortunately, there are three structural pa-
rameters, the C—H and C-O bond distances and the HCH bond
angle, while there are only two rotational constants, 4 and B,
determined for each state. (At this point we neglect the small
Jahn—Teller geometric distortion represented by h; and h,.) We
have isotopic data for CD;0, but without the corresponding
microwave data for CD;0, it would be very difficult to disentangle
the ground- and excited-state rotational constants. (See note added
in proof.)

We are thus forced to make a geometric assumption about
methoxy. Carbon-hydrogen bonds vary little over a wide variety
of compounds Thus we will assume that methoxy and methanol
have equivalent C—H bond lengths. 1.10 A, within an uncerlamty
of 0.02 A. Table V is built upon that assumption and gives the
corresponding HCH bond angle and CO bond length. Probably
the most interesting observation (and one least likely to be affected
by the C—H bond length assumption) concerns the change in
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TABLE V: CH;0 Geometry”

state
parameter X2E AA,
Ren, A 1.10 £ 0.02 1.10 £ 0.02
Reo. A 1.37 £ 0.02 1.58 £ 0.02
ZHCH, deg 109 + 3 113+ 4

%The C-H bond length is assumed (based upon CH;OH and related
molecules) to be 1.10 A in both states with an uncertainty of 0.02 A.
This uncertainty, which is the dominant uncertainty, is propagated into
the other bond length and angle.

geometry between the ground and excited state.

As can be seen from Table V, the CO bond lengthens by over
0.2 A between these two states. Such a lengthening had been
presaged by the significant drop in the CO stretching frequency
in the X and A states. It is also qualitatively consistent but larger
than that predicted by a previous ab initio calculation.'? However,
this work represents the first experimental determination of high
precision for the excited A state geometries and hence the first
true measure of the change in geometry between the states. While
less dramatic, Table V also clearly shows that the HCH bond angle
clearly opens up (by =4°) in going to the excited A state.

Besides the rotational constants, Table III also lists a number
of parameters, e.g., i, b, a.d, etc., more or less directly related
to the Jahn—Teller effect in methoxy. Our values for these pa-
rameters do not vary qualitatively from those previously reported
by Endo et al. They discussed the implications of these parameters
at some length, but clearly several questions remain unanswered.
We will defer further discussion of these parameters until our
analysis of the vibronic structure of the Jahn—Teller active modes
is complete. Hopefully, a combination of all the Jahn—Teller
related parameters will yield a complete picture of the distortion
of this molecule.
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Appendix

Equation 29 contains two factors S,(e,3) and Sy.(8,7). Since
in our experiment, both a and c correspond to the 2E ground state
of methoxy and b corresponds to the excited 2A, state, we shall
adopt the notation Sg,(e,8) and S,.(8,v). Because of the Her-
mitian nature of the matrix elements involved so long as o = =,
if we calculate S,,, S, can be obtained from it trivially.

We now need to consider explicitly the quantum numbers
associated with @ and 8. For the 2E ground state the case-a-like
basis functions can be written following eq 4 as

|EJPMS 2 E) =
2VA=1,J P MS2) £ (-1)/ P EA=—1,]-PMS-Z}]
(A1)
Thus we associate with « the quantum numbers exhibited in the

ket on the left-hand side of eq Al. Following eq 25 and 26 we
can write the A state case-b-like basis functions as

AJMNKSE)= Y (~D)VSM2J + 1)1/2 x
Mg My

N S J
N,K,M 5,2 A2
(MN s _M)| K My)|SMg) (A2)

Thus we associate with § the quantum numbers exhibited in the
ket on the left-hand side of eq A2.

In order to compute S, it is useful to express the case b
functions in terms of case a functions, i.e.

AJMNESE) =
2(71)7J+P+ZS(2A{ % 1)1/2( J N S
PX =

A,J,P.M &
il _E)| JPMSZE) (A3)

Because S = !/,, there are only two terms in this sum, so one
can write explicitly

Liu et al.

|AJMNKS p) = C(J,K)AJP=K+2.M.S,2,p) +
Co(J K, B)|AJP=K-Z,M.S,~Z,p) (A4)

where
1/2
JTK+Y i
=) s 3
Ci(J,K.9) 27+ 1 (A5a)
1/2
JEK+ % "
G KS) =F| ——————
2(55) -+ 2+ 1 ( )

6 = 1 or 2, corresponding respectively to the spin components F)
(N=J-"/,) or F, (N=J+/,), respectively. In eq A5 the
top signs correspond to F, and the lower to F;. The p takes on
the parity quantum number values plus aand minus. For the
special case of K = 0, the case b basis function reduces to

|AJ,M,N,KE=0,S,p) = |AJ,P=Z,M 52 %) (AG)
where the only state existing for /V even is the plus case a state
of symmetry A, and for NV odd the minus case a state of symmetry
A,
We can now consider the line-strength function S,.(«,3) in
isotropic space for the K # 0 case:

Saela,B) = 3A§1J(aluz!ﬁ>i2 =
3 2 |C(J.K8)(EJ.P.M.S.Z,plu |AJ \P'=K+Z' . M'S.Z'p’)
MM
+ C(J.K,8){E,T,P,M,S.2,p|u,|A T, P=K-2' M'\S-2 p"*
(AT)
To simply eq A7, it is worthwhile considering in detail the case
a matrix elements. Let us define
pa(,B) = (E.J,P,M,S.Z.plu|AJ P M'S, 2 p’) (A8)

u, corresponds to the Oth component of a first-rank irreducible
tensor operator in the space-fixed coordinate system which is
related to the corresponding quantities 7" () in the molecule fixed
system by

pe = LD (w) THw) (A9)

where D! is the rotational matrix relating through the Euler angles,
w, the molecule-fixed and space-fixed system. We can now write

Hale,B) =
2(EJ,P,M.S,Z p|Dy(w) THw)|AJ P .M'SZ'p) =

1 J’)
X
0 M
[eod?, | Jea=ninwisazoy +
F o J)

P -1 -p
(A10)

3 - o 7
(1) M[2J + 1)@ + 1))V (M

pp(—1 )“JI‘P‘P’(E(A=—1)]Tl,(u)|A)A=O))] (—1)“"’(

The matrix elements in eq A10 are quadratures over the vibronic
eigenfunctions corresponding to a specific vibrational level of the
2E and %A, electronic states. For an A-E transition in C;, sym-
metry, the » = 0 term in the summation vanishes, leaving only
the r = 1 terms. The product pp’ yields a plus sign if the %
symmetry of the °E and ?A, states are the same and a minus sign
if they are different. The “cross terms” between the two-com-
ponent basis functions vanish because the electric dipole moment
operator is zero between states with different values of Z.
Likewise, the matrix elements (E(A==%1)|TL,(x)]JA(A=0)) van-
ish, because they are not invariant under the symmetry operation
Cs.
If we now insert the results of eq A10 into eq A7 for S,.(,3)
and perform the sum over M, utilizing the properties of the 3 -
J symbols, we obtain
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¥
Sae[(EJP.EZ,p)(AJNKPY] - %(ZJ’-F DERJ+1) X

J R
]Ciu,&a)[mm1)|T}(#)IA(A=0)>(—1)P(_P : PLK+2)+

pp' (1) E(A=—1)| T, ()| A(A=0)}(-1) 7 X

(J 1 J

#_1 PSS+ e
P -1 ,P,;K_E)] +p'(-1) Cy(J.K5)

J 1 J’
[(E(A=1)IT:(M)EA(A=0)>(“1)”(_P 1 P,z_K+2)

pp/(-1)P PP (A=1)|THw)A(A=0))(-1)" X
4 2
(J 1 _—
P -1 P=K-Z
To simplify S,.(c,8) further, we must use the relationship

(E(A=1)|T}(w)|A(A=0)) = —~(E(A=—1)|T%,()|]A(A=0))
(A12)

Equation A12 follows from the facts that under the symmetry
operation o, (for methoxy reflection in the plane containing one
hydrogen and bisecting the H-C—H angle formed by the other
two hydrogens), as shown by Hougen?

o, |E(A==x1)) = +E|[(A==1))

O'DTlil(#) i Li(.‘l)

It is clear that in eq A1l the 3 — j symbols multiplying respectively
C,(J.K,5) and C,(J,K,8)) causc at a maximum only one of the
two terms to be nonvanishing for any value of K. In addition from
eq AS |C)(J,K,8)| = |Co(4,-K.5)|, so we obtain

S [(EJ,P.Z,p),(AJNK=0,v,p)] =

8 (27 + DI+ (C1(E = P) + (-1)? + ] X
1 J :
1 P'=K+3

(A13a)
(A13b)

KEG=DITIWIAG=00F ", (a14)
where as before 8 = 1 or 2 corresponding to the F; and F, com-
ponents of the A state and for the 2E;, state = = !/, while for
the ’E, 5 state = = —'/,. S,e(e,) may also be seen to vanish unless
the states connected differ in the parity quantum number p.

For the case of K = 0, the expression for S,.(,3) can be derived
analogously:

8o [(EJP2Z,p),(AJNK=0,p")] =
(2J + 120" + DKE(A=1)|T{()|A=0)]> X
J 1 Y

Al
-(1+2) 1 Z wai2)

(24) Hougen, J. T. J. Chem. Phys. 1962, 37, 1433; 1963, 39, 358.
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where now for each N there is either a plus or a minus combi-
nation, not both.

If one inserts eq Al4 (or eq A15) into eq 29, then one has a
complete formula for the intensity. It should be noted that in eq
29 the last S factor, representing the emission process, is to be
summed over all the quantum numbers of the (final) E state. The
quantum numbers J, P, E, and p are explicit in eq A14 (or eq
A15), and the sum is easily performed by using the properties of
the 3 — j symbols. However, there is one sum, contained in the
vibronic matrix element [{E(A=1)|T}(1)|A(A=0)}[% that requires
summing over all “vibrational” levels of the 2E “clectronic™ state
to which emission occurs.

This sum reduces to a constant that does not vary significantly
under the following three assumptions: (i) All transitions from
the excited A state terminate on totally symmetric vibrational levels
of the X state. Our previous observations’ of the resolved emission
spectrum of CH;O indicate that when pumping 0§ or 33 more than
80% of the emission terminates upon the totally symmetric vi-
brational levels. (ii) The vibromic transition moment can be
factored into a Franck—Condon factor and an electronic transition
moment. This is true for the totally symmetric vibrational levels
of CH,O which are only weakly affected by the Jahn—Teller
interactions. (iii) As indicated in eq 29, the frequency dependence
of the detector and the »@ can be taken as constant. This as-
sumption allows the summation of the Franck—Condon factor to
unity. While the methoxy emission spectrum is extended, its range
is not so great as to introduce serious errors with this approxi-
mation.

Finally, eq A14 and A15 are derived for the ideal situation of
the 2E state being exactly case a and the A, state being exactly
case b. In actual practice, the deviation of the A state is unob-
servable experimentally. For the E state the deviation is small
but observable. Strictly speaking, the state characterized by
|E,J,P,M,S,2,+) should be replaced by the corresponding ei-
genfunction

|E.J.PM,S.24) = 20,.|EJ.q.MS,0,£) (Al6)
q.e

where ¢ runs from —J to J and o0 = £'/,. The (,, cocfficients
are obtained from the numerical diagonalization of the E state
matrix, and we find Qpy = 1 always and only three other coef-
ficients are ever nonnegligible, i.e.,, Qpys-3. Q-pro+2z3. and
Q_pi23 The values of S, actually used in eq 30 of the text were
numerically calculated via eq A14-A17, including all four of these
coefficients.

Note Added in Proof. Using the B rotational constants of
13CH;0 and '2CD40O from a recent paper (Momose, T.; Endo,
Y .: Hirota, E.; Shida, T. J. Chem. Phys. 1988, 88, 5338) and 4
and B constants of '2CH;0 in the present paper, the X°E state
geometry of methoxy is determined as rey = 1.106 A, reo =1.363
A, and ZHCH = 108.3°.

Registry No. CH,0, 2143-68-2.



