Target Organic Contaminant Library Development in Support of Sample Analysis at Mars (SAM)

Raul Garcia-Sanchez Research Investigator: Dr. Paul R. Mahaffy Code 699, NASA Goddard Space Flight Center Research Mentor: Dr. Prabhakar Misra Department of Physics & Astronomy, Howard University

Outline

- Summary
- Research Purpose
- Research Questions
- Challenges
- Tools
- Methodology
- File Database
- Contaminants Database
- Project Timeline
- Issues

Summary

- The primary purpose of the research is to develop an organic contaminants database for the SAM project that supports the Mars Science Laboratory (MSL).
- Our work involves the development of an organic contaminants database that will allow us to determine what compounds are found here on Earth and would be inadvertently detected in the Mars soil and gaseous samples as impurities.
- In order to develop a comprehensive target database, we utilize the National Institute of Standards & Technology (NIST) Automated Mass Spectral Deconvolution and Identification System (AMDIS) and Ion Fingerprint Deconvolution (IFD) software to analyze the GC/MS data.

Research Purpose

- Analyze data from the rover environment using Gas Chromatography Mass Spectroscopy (GC/MS).
- Develop an organic contaminants database for the Sample Analysis at Mars utilizing GC/MS analysis tools.
- Utilize this database to identify compounds from actual mission samples.

Research Questions

- What organic compounds can be found in the rover structure? Where in the rover can they be found?
- How accurately can we determine the compounds from tests to those on the actual rover?
- How will identifying these compounds help when the time comes for the actual mission analysis?

Challenges

- Identifying the correct contaminant from very similar family of compounds.
 - i.e., Hexamethyl Cyclotrisiloxane vs
 - Octamethyl Cyclotetrasiloxane
- Obtaining the information required to determine the accuracy of our results.
- Learning to interpret the spectra efficiently.

Tools

Software

- Automated Mass Spectral Deconvolution and Identification System (AMDIS)
- National Institute for Standards and Technology (NIST) MS Search
- Ion Signature Quantitative Deconvolution (IFD)

Hardware

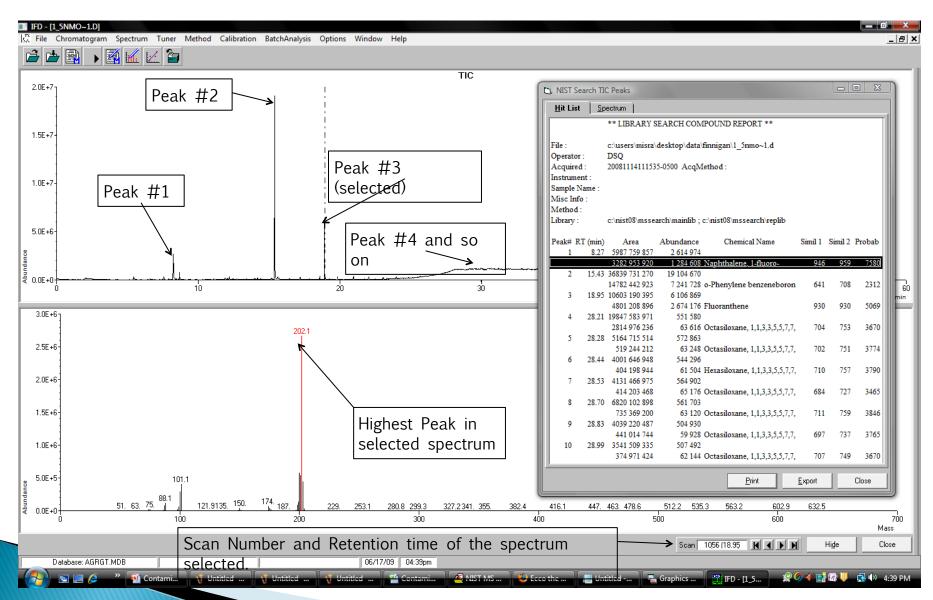
GC/MS device

Methodology

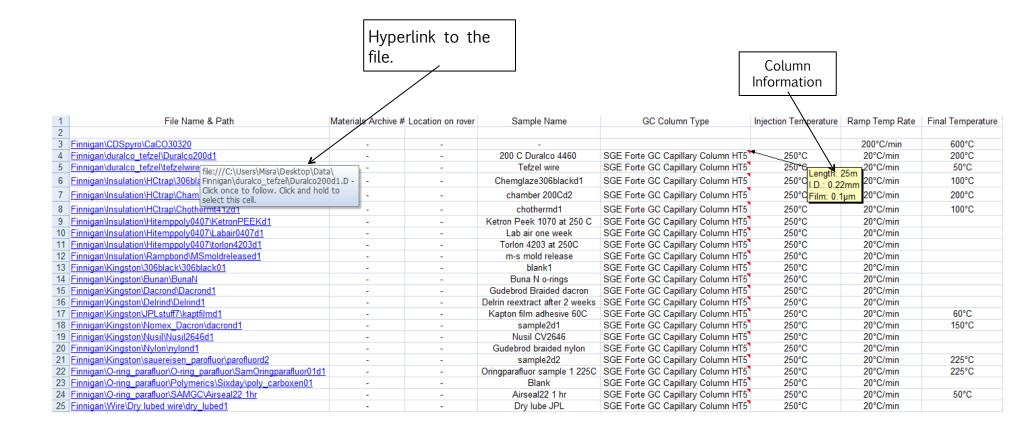
- Utilize IFD to identify the TIC peaks, then select the most significant ones.
- Run a similarity (based for highest match/rmatch ratio) and an identity search (based on probability) using IFD.
- Interpret the results between these searches.
- Export the TIC peak spectra to NIST.
- Use NIST to identify the spectra and test if it agrees with IFD results.
- Insert entry into contaminants spreadsheet.

Automated Mass Spectral Deconvolution and Identification System (AMDIS)

- AMDIS is a software used to extract clean spectra from complex GC-MS analysis.
- It allows you to build your own target compound library.
- It is useful when you have noisy Total Ion Current (TIC) spectral files.
- It deconvolutes the data, matching the compounds and finds target compounds from the selected library.
- It accepts large data files in different formats (.cdf, .ms, .d, etc.)


National Institute of Standards and Technology (NIST) MS Search

- When you have the MS for a compound at a certain retention time in the GC, you can run a search command to see if the compound matches an entry in the NIST library.
- The NIST library search program returns the compounds that are most likely to be the compound you are searching for.


NIST MS Search Interface

Ion Signature Quantitative Deconvolution: TIC Peak Identification

File Database

Contaminants Database

1	Compound name in Library	Retention Time	Compound Name (most probable)	Formula	Probability	Match	R. Match	Library
2								
3	Finnigan\1 5nmolstandard.D							
4								
5	Naphthalene, 1-fluoro- in Finnigan/1_5nmolstandard.D at RT = 8.268	8.268	Naphthalene, 1-fluoro-	C ₁₀ H ₇ F	75.8	948	964	Mainlib
6	Unknown compound in Finnigan/1_5nmolstandard at RT = 15.416	15.416	o-Phenylene benzeneboronate	C12H9BO2	34.2	669	733	Mainlib
7	Fluoranthene in Finnigan/1_5nmolstandard.D at RT = 18.945	18.945	Flouranthene	C16H10	57	926	926	Mainlib
8								
9	SuiteBO\SuiteBO 0828.D	Link to fil	e database.					
10	Alkane Hydrocarbon in SuiteBO\{file:///C:\Users\Misra\Desktop\	5.946	Undecane, 3-methyl-	C12H26	9.42	748	803	Mainlib
11	Alkane Hydrocarbon in SuiteBO	6.068	Decane	C10H22	6.17	766	873	Mainlib
12	Alkane Hydrocarbon in SuiteBO\SuiteBO_0828.D at RT = 6.207	6.207	Dodecane, 2,6,10-trimethyl-	C15H32	22.1	768	881	Replib
13	Alkane Hydrocarbon in SuiteBO\SuiteBO_0828.D at RT = 6.351	6.351	Tetradecane	C14H30	6.27	725	859	Replib
14	Alkane Hydrocarbon in SuiteBO\SuiteBO_0828.D at RT = 6.406	6.406	Decane, 2-methyl-	C11H24	11.2	776	868	Mainlib
15	Alkane Hydrocarbon in SuiteBO\SuiteBO_0828.D at RT = 6.484	6.484	Heptane, 5-ethyl-2,2,3-trimethyl-	C12H26	7.44	726	847	Mainlib
16	Alkane Hydrocarbon in SuiteBO\SuiteBO_0828.D at RT = 6.545	6.545	Dodecane, 2,6,11-trimethyl-	C15H32	8.38	784	838	Mainlib
17	Alkane Hydrocarbon in SuiteBO\SuiteBO_0828.D at RT = 6.722	6.722	Decane, 2,3,5,8-tetramethyl-	C14H30	5.89	765	802	Replib
18	Alkane Hydrocarbon in SuiteBO\SuiteBO_0828.D at RT = 6.839	6.839	Tetradecane	C14H30	7.27	782	849	Mainlib
19	Alkane Hydrocarbon in SuiteBO\SuiteBO_0828.D at RT = 6.938	6.938	Undecane, 4-methyl-	C12H26	15.2	751	844	Mainlib
20	Alkane Hydrocarbon in SuiteBO\SuiteB0_0828.D at RT = 6.988	6.988	Undecane, 4-methyl-	C12H26	19 <mark>.</mark> 9	729	861	Mainlib
21	Unknown compound in SuiteBO\SuiteBO_0828.D at RT = 8.385	8.385	Formyl colchicine	C23H25NO7	31	524	545	Mainlib
22	Unknown compound in SuiteBO\SuiteBO_0828.D at RT = 9.471	9.471	(3,4-Dimethyl-5-oxo-2,5-dihydro-1H-p	C27H41N3O2S2	11.7	490	508	Mainlib
23	Unknown compound in SuiteBO\SuiteBO_0828.D at RT = 10.236	10.236	Pentanoic acid, 2,2,4-trimethyl-3-carb	C16H30O4	9.01	564	809	Mainlib

Unknown compounds have very low probability, do not meet user criteria and have a low match ratio.

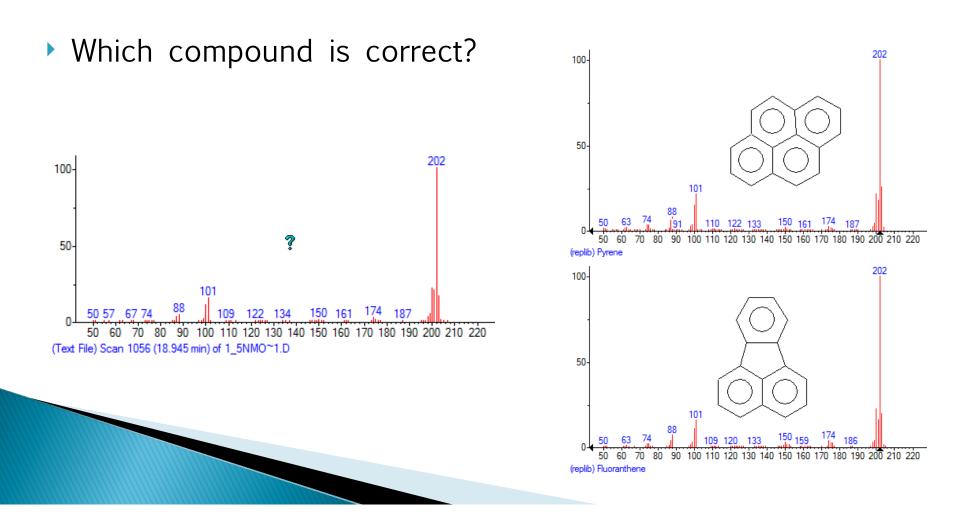
Project Timeline: Current Work

- Retrieve and tabulate information regarding the data files and their run parameters, rover location, etc.
- Retrieve the temperatures for the data files based on the method used.
- Consult with other researchers to ensure that the results returned by our analysis matches with their expectations of what contaminants should be present.
- Integrate the new data into the target library and monitor how effective it is in successfully identifying compounds found in the rover's environment to ensure correct contaminant detection.

Project Timeline: Future Work

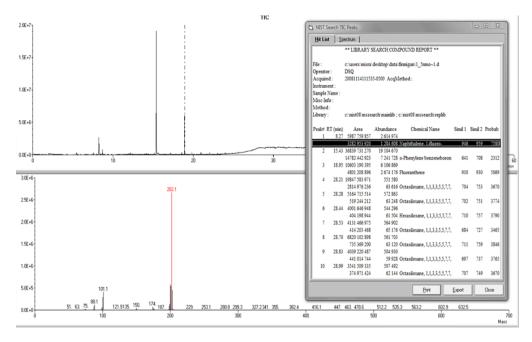
- Continue analyzing more test data files as well as real-time data as it becomes available.
- Wrap-up the contaminants data base for the Finnigan data.
- Develop a program prompt that will ease the retrieval of the file information.
- Analyze Coldfinger (CF) data.

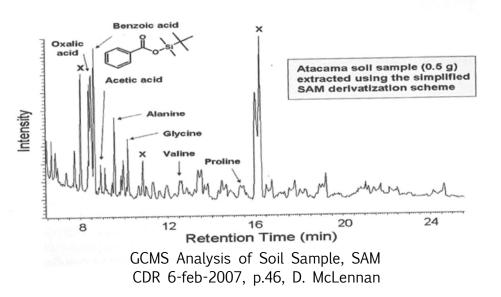
Issue #1: Method Inconsistencies


Is the method obtained by Doris Jallice and Dr. John Canham the same?

jcanham	Oven	Method
Initial Temperature (C):	5 0	
Initial Time (min):	2.00	
Number of Ramps:	1	_ Ramp Temp Rate Entry in File
Rate #1 (deg/min):	20.0 4	database.
Final Temperature #1 (C):	3 3 0 🗲	database.
Hold Time #1 (min):	5.00	
Post Run Temperature:	Off	Final Temperature Entry in
Enable Cryogenics:	Off	File database***.
Maximum Temperature (C):	4 5 0	
Prep Run Timeout (min):	360.00	
Equilibration Time (min):	0.00	
ight SSL Method Base Temperature:	0 n	
Base Temperature (C):	2 5 0	Injection Temperature
Mode:	Splitless	Entry in File database.
Split Flow:	0 n	5
Split Flow Flow (ml/min):	2 0	
Splitless Time (min):	1.00	
Surge Pressure:	Off	
Surge Pressure (psi):	0.44	
Surge Duration (min):	0.00	

Issue #2: Compound similarity


Search 1_5nmolstandard.D at RT = 18.945.


- Fluoranthene ($C_{16}H_{10}$) @ 57.0%, 926/926 Match
- Pyrene ($C_{16}H_{10}$) @ 35.7%, 909/909 Match

Issue #3: TIC Peak criteria

What are acceptable criteria to determine that a TIC peak is significant?

Issue #4: File Spreadsheet Information

Missing and uncertain information on files.

What format is the
archive number and
where is the information
located?

Unable to find information regarding location on rover of materials analyzed. What is the nomenclature for naming samples?

Why are all sample types listed as

unknown?

File path and name	Materials Archive Num.	Location on rover	Sample Name	Sample Type	Method	GC Column Type	Injection Temp	Ramp Temp Rate	Final Temp	Acquisition D	
Finnigan\CDSpyro\SF120t24h.D		-	-	-	CDSpyro	-		200°C/min	600°C	-	
Finnigan\CDSpyro\SF120t47h.D	-	-	-	-	CDSpyro	-		200°C/min	600°C	-	
Finnigan\duralco_tefzel\blnk01.D	-	-	blnk1	Blank	TDSLc	SGE Forte GC Capillary Column HT5	250°C	20°C/min		08/30/07 03:10	
nnigan\duralco_tefzel\blnk02_070830160749.E	-	-	blnk2	Blank	TDSLc	SGE Forte GC Capillary Column HT5	250°C	20°C/min		08/30/07 04:07	
Finnigan\duralco_tefzel\blnk03.D	-	-	blnk3	Blank	TDSLc	SGE Forte GC Capillary Column HT5	250°C	20°C/min		08/31/07 04:51	
Finnigan\duralco_tefzel\Duralco200d1.D	-	-	200 C Duralco 4460	Unknown	TDSLc	SGE Forte GC Capillary Column HT5	250°C	20°C/min	200°C	08/23/06 03:20	
Finnigan\duralco_tefzel\Duralco200d2.D	-	-	200 C Duralco 4460 d2	Unknown	TDSLc	SGE Forte GC Capillary Column HT5	250°C	20°C/min	200°C	08/24/06 04:27	
Finnigan\duralco_tefzel\Duralco200d3.D	-	-	200 C Duralco 4460 d3	Unknown	TDSLc	SGE Forte GC Capillary Column HT5		20°C/min	200°C	08/24/06 09:15	
Finnigan\duralco_tefzel\duralco4525d1.D	-	-	sample1d1	Unknown	TDSLc	SGE Forte GC Capillary Column HT5		20°C/min	210°C	08/30/07 05:32	
Finnigan\duralco_tefzel\duralco4525d2.D	-	-	sample1d2	Unknown	TDSLc	SGE Forte GC Capillary Column HT5		20°C/min	210°C	08/30/07 07:04	
Finnigan\duralco_tefzel\duralco4525d3.D	-	-	sample1d3	Unknown	TDSLc	SGE Forte GC Capillary Column HT5		20°C/min	210°C	08/30/07 08:37	
Finnigan\duralco_tefzel\duralco4525d4.D	-	-	sample1d4	Unknown	TDSLc	SGE Forte GC Capillary Column HT5	250°C	20°C/min	210°C	08/30/07 10:09	
innigan\duralco_tefzel\postduralco4525d1.D	-	-	postsample1d1	Unknown	TDSLc	SGE Forte GC Capillary Column HT5	250°C	20°C/min	210°C	08/30/07 06:18	
innigan\duralco_tefzel\postduralco4525d2.D	-	-	postsample1d2	Unknown	TDSLc	SGE Forte GC Capillary Column HT5	250°C	20°C/min	210°C	08/30/07 07:50	
innigan\duralco_tefzel\postduralco4525d3.D	-	-	postsample1d3	Unknown	TDSLc	SGE Forte GC Capillary Column HT5	250°C	20°C/min	210°C	08/30/07 09:23	
innigan\duralco_tefzel\postduralco4525d4.D	-	-	postsample1d4	Unknown	TDSLc	SGE Forte GC Capillary Column HT5		20°C/min	210°C	08/30/07 10:55	
innigan\duralco_tefzel\posttefzelm22759d1.D	-	-	postsample2d1	Unknown	TDSLc	SGE Forte GC Capillary Column HT5	250°C	20°C/min	200°C	08/31/07 01:00	
innigan\duralco_tefzel\posttefzelm22759d2.D	-	-	postsample2d2	Unknown	TDSLc	SGE Forte GC Capillary Column HT5	250°C	20°C/min	200°C	08/31/07 02:33	
innigan\duralco_tefzel\posttefzelm22759d3.D	-	-	postsample3d3	Unknown	TDSLc	SGE Forte GC Capillary Column HT5		20°C/min	200°C	08/31/07 04:05	
Finnigan\duralco_tefzel\tefzelm22759d1.D	-	-	sample2d1	Unknown	TDSLc	SGE Forte GC Capillary Column HT5		20°C/min	200°C	08/31/07 12:14	
Finnigan\duralco_tefzel\tefzelm22759d2.D	-	-	sample2d2	Unknown	TDSLc	SGE Forte GC Capillary Column HT5	250°C	20°C/min	200°C	08/31/07 01:46	
Finnigan\duralco_tefzel\tefzelm22759d3.D	-	-	sample3d3	Unknown	TDSLc	SGE Forte GC Capillary Column HT5	250°C	20°C/min	200°C	08/31/07 03:19	
Finnigan\duralco_tefzel\tefzelwire.D	-	-	Tefzel wire	Unknown	TDSLc	SGE Forte GC Capillary Column HT5	250°C	20°C/min	50°C	08/08/06 02:47	